Example 1: Design a modulo-8 binary-up counter using T- Flip Flop

 Modulo 8 counter : Counts upto 7. So we need three Flip-flops for eight states

Truth Table

У3	У2	У1	_I У ₃₊	У ₂₊	У1+	Z
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	1	0	1	0
1	0	1	1	1	0	0
1	1	0	1	1	1	0
1	1	1	0	0	0	1

" Z " is the output

Modulo-8 counter

Modulo-8 counter

$$y_{2+} = \Sigma(1, 2, 5, 6)$$

$$y_{2+}$$

$$1$$

$$1$$

$$1$$

$$1$$

$$1$$

$$1$$

$$\mathsf{T}_{\mathsf{y2}} = \mathsf{y}_1$$

Modulo-8 counter

 $y_{1+} = \Sigma(0,2,4,6)$

Example 2:Design a modulo-8 binary-up counter with input x using T- Flip Flop

✓ Modulo 8 counter : Counts upto 7 . So we need three Flip-flops for eight states

Х	y ₃	y ₂	y 1	у 3+	У ₂₊	y 1+
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	1	0	0
0	1	0	1	1	0	1
0	1	1	0	1	1	0
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	0	1	0	1	0
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	1
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	0	0	0

 $y_{3+} = \Sigma(4,5,6,7,11,12,13,14)$

$$y_{2+} = \Sigma(2,3,6,7,9,10,13,14)$$

$$y_{1+} = \Sigma(1,3,5,7,8,10,12,14)$$

Example 2: modulo 8 counter with I/p x

Example 2: modulo 8 counter with I/p x

Example 2: modulo 8 counter with I/p x

Example 3: Design a binary-down decade counter using SR- Flip Flop without input x

✓ Decade Counter: Counts up to 9 . So we need four Flip-Flops for ten states

y 4	y 3	y ₂	y ₁	Y ₄₊	У 3+	y ₂₊	y ₁₊	
0	0	0	0	1	0	0	1	
0	0	0	1	0	0	0	0	
0	0	1	0	0	0	0	1	$y_{4+} = \Sigma(0,9) + \Sigma_{x}(10)$
0	0	1	1	0	0	1	0	
0	1	0	0	0	0	1	1	
0	1	0	1	0	1	0	0	$v_{0} = \Sigma(5.6.7.8) + \Sigma$
0	1	1	0	0	1	0	1	J ₃₊ 2(0,0,7,0)+ 2
0	1	1	1	0	1	1	0	
1	0	0	0	0	1	1	1	$v = \frac{\nabla}{2} \frac{1}{2} \frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{1}{2}$
1	0	0	1	1	0	0	0	y ₂₊ =2(3,4,7,0)+2 _y
1	0	1	0	х	х	х	х	
1	0	1	1	х	х	х	х	
1	1	0	0	х	х	х	х	$y_{1+}=\Sigma(0,2,4,6,8)+$
1	1	0	1	х	х	х	х	
1	1	1	0	х	х	х	х	
1	1	1	1	х	х	х	х	

$$\chi_{4+} = \Sigma(0,9) + \Sigma_{x}(10,11,12,13,14,15)$$

 $\chi_{3+} = \Sigma(5,6,7,8) + \Sigma_{x}(10,11,12,13,14,15)$

$$y_{1+}=\Sigma(0,2,4,6,8)+\Sigma_x(10,11,12,13,14,15)$$

	y y	3	
x	x	1	
x		x	х
х		x	х
х		x	х

R_{y3}=y₁y₂y₃

R_{y1}=**y**₁

A slightly fancier counter

- Let's try to design a slightly different two-bit counter:
 - Again, the counter outputs will be 00, 01, 10 and 11.
 - Now, there is a single input, X. When X=0, the counter value should increment on each clock cycle. But when X=1, the value should decrement on successive cycles.

10

 We'll need two flip-flops again. Here are the four possible states:

The complete state diagram and table

• Here's the complete state diagram and state table for this circuit.

Presen	t State	Inputs	Next	State
Q_1	Q_0	X	Q_1	Qo
0	0	0	0	1
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	0

D flip-flop inputs

- ✓ If we use D flip-flops, then the D inputs will just be the same as the desired next states.
- ✓ Equations for the D flip-flop inputs are shown at the right.
- \checkmark Why does $D_0 = Q_0'$ make sense? $-Q_1$

Present State		Inputs	Next	State
Q_1	Q_0	X	Q_1	Q_0
0	0	0	0	1
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	0

1

0

X

0

1

0

1

 $D_{1=}Q_1\oplus Q_0\oplus X$

1

Example 5: Synthesis Using T Flip-Flops

✓ The synthesis using T flip-flops will be demonstrated by designing a binary counter. An n-bit binary counter consists of n flip-flops that can count in binary from 0 to 2ⁿ-1. The state diagram of a 3-bit counter is:

Synthesis Using T Flip-Flops

Present State			Ne	xt St	ate	Flip-F	lop Inputs		
A ₂	A ₁	Ao	A ₂	A	Ao	TAZ	T _{A1}	TAO	
0	0	0	0	0	1	0	0	1	
0	0	1	0	1	0	0	1	1	
0	1	0	0	1	1	0	0	1	
0	1	1	1	0	0		1	1	
1	0	0	1	0	1	0	0	1	
1	0	1	1	1	0	0	1	1	
1	1	0	1	1	1	0	1	1	
1	1	1	0	0	0		1	1	

Synthesis using T Flip-Flops

Present State		Ne	Next State			Flip-Flop Inputs		
A ₂	A ₁	Ao	A ₂	A	Ao	TAZ	T _{A1}	TAO
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	1	1
1	1	1	0	0	0	1	1	1

Synthesis Using T Flip-Flops

